Question Number	Answer	Acceptable answers	Mark
$\mathbf{1 (a)}$	A transverse and electromagnetic		$\mathbf{(1)}$

Question Number	Answer	Acceptable answers	Mark	
$\mathbf{1 (b)}$		(1)	award full marks for correct answer with no working	(3)
	Evaluation 171.5			
	Substitution			
	$(34.3 / 171.5) \times 100$	(1)	$[34.3 /(34.3 \times 5)] \times 100$ $[34.3 /(34.3 \times 5)]$ $[34.3 / 171.5]$	
	Evaluation		Allow 0.2 or $1 / 5$ for 3 marks	
	$20(\%)(1)$			

Question Number	Answer	Acceptable answers	Mark
$\mathbf{1 (c)}$	rate of \{energy/heat\} (from the Sun) \{absorbed/taken in\} (1) equals rate of \{energy/heat\} \{radiated/emitted/given out\}(1)	Allow 'energy in = energy out' for 1 mark	(2) 'power in = power out' for 2 marks

Question Number	Answer	Acceptable answers	Mark
1(d)	```Any two suggestions from: reflection (from external connections/plastic cover)(1) absorption by {external connection/ plastic cover/back plate} transmission (through back plate)None```	Not all energy absorbed by silicon layer/absorbed by wrong parts	(2)

Total for Question 1 = 8 marks

Question Number	Answer	Acceptable answers	Mark
2(a)	Any one of the following points	Ignore general references to weather ignore economic arguments	unreliability (1) e.g. wind does not always blow / wind speed may be too high/too low
the wind is unreliable only works when it is windy wind turbines can only use a (small) range of wind speeds e.g. noise from wind turbines / wind turbines spoil the view	visual pollution	(1)	

Question Number	Answer	Acceptable answers	Mark
2(b)(i)	```transposition (1) current = power }\div\mathrm{ voltage substitution (1) 322000 000\div132000 evaluation (1) 2440 (A)```	Transposition and substitution may be in either order Transposition may be implied by correct figures $\mathrm{I}=\mathrm{P} \div \mathrm{V}$ Ignore powers of ten until final answer i.e. give 2 marks for $322 \div 132$ 2439 (A) 2439.39....(A) 2.44 kA give full marks for correct answer, no working give 2 marks for a power of 10 error, no working e.g. 2.44 (A)	(3)

Question Number	Answer	Acceptable answers	Mark
2(b)(ii)	calculation to find additional power generated e.g. $539-322=217(M W)(1)$	217 without working $2.893(M W)$ give full marks for correct answer, no working	(2)

Quest Numb		Indicative content	Mark
QWC	*2(c)	A discussion to include some of the following points Social factors / economic factors - people may not like it (NIMBY) / pressure groups - cost arguments Environmental factors - spoiled view / risk of birdstrike - space for extra infrastructure eg. access roads / substations Associated hazards - danger from higher voltage - dangers from construction work in mountainous area - danger to maintenance crew from working at greater height Energy efficiency arguments - higher voltage leads to lower current - lower current means reduced heat losses - higher voltage means / lower current / can transmit energy further - reduced heat loss means improved efficiency Logical use of data - taller pylons can be seen from further away - net reduction in number of pylons / need to remove old ones - stronger materials needed for pylons / cables - need for new transformers Appropriate calculations - $1000-600=400$ fewer pylons (approx) - current reduced by a factor of $132 / 400$ (0.33)	(6)

Level	0	no rewardable material
1	1-	- a limited discussion of the plan to replace the power transmission lines (or upgrade the wind farm) including two or more points, advantageous (A) or disadvantageous (D), which may appear as a list e.g. $(A+D)$ is more efficient; is expensive OR (A+A) uses fewer pylons; current is lower OR ($D+D$) would spoil the view; high voltage is dangerous - the answer communicates ideas using simple language and uses limited scientific terminology - spelling, punctuation and grammar are used with limited accuracy
2	3-	- a simple discussion of the plan to replace the power transmission lines including two or more statements, advantageous (A) or disadvantageous (D), at least one of which links ideas e.g. (A) higher voltage leads to lower current + (D) if old pylons are removed they will go to waste OR (A) using higher voltage means energy can be transmitted further $+(A)$ wasting less e ergy saves money OR (D) new pylons spoil the view more because they are taller + (D) danger to maintenance crew from working at greater height - the answer communicates ideas showing some evidence of clarity and organisation and uses scientific terminology appropriately - spelling, punctuation and grammar are used with some accuracy
3	5-6	- a detailed discussion of the plan to replace the power transmission line, including an advantage (A) AND a disadvantage (D) both containing linked ideas, at least one of which shows use of the data e. (A) creasing the voltage to 400 kV leads to a reduction in the current (needed to transmit the same power) + (D) higher voltages will mean that they need new transformers OR (A) it will be more efficient because less energy is wasted + (D) even though there will be 400 fewer pylons they will be taller and can be seen from further away - the answer communicates ideas clearly and coherently uses a range of scientific terminology accurately - spelling, punctuation and grammar are used with few errors

Question Number	Answer	Acceptable answers	Mark
3(a)	B		(1)

Question Number	Answer	Acceptable answers	Mark
3(b)(i)	an explanation linking three of the following - (waves cause) float to move (up and down)(1) - (this causes) magnet to move (in and out of coil) (1) - (hence) magnetic field (of magnet) (1) - cuts across/links/ interacts wire in coil (1) - inducing/generating potential difference across ends of coil (1)	magnet moves (in the coil) Allow\{current/voltage/volts/am ps\} induced/generated in coil	(3)

Question Number	Answer	Acceptable answers	Mark
3(b)(ii)	a description including two of the following		
	increase the number of turns on the coil (1)	more coils (of wire) ignore bigger coil magnet (1)	stronger/more magnets Ignore bigger magnet
Allow idea of more/bigger/ faster waves	(2)		

Question Number		Indicative content	Mark
QWC	*3(c)	A discussion linking some of the following Advantages of tidal power - renewable energy source - reduction in greenhouse gases/atmospheric pollution (compared to fossil fuel) - reduces reliance on fossil fuels - conserves stocks of fossil fuels - predictable source of energy - regular/reliable supply of energy - barrages at different areas would give energy supply at different times Disadvantages of tidal power - does not give continuous supply of energy - destruction of plant/animal/bird habitats - problems with passage of ships - affects migration of fish - high capital cost / very long payback time - pollution caused from producing /transporting building materials - visual pollution This list is not exhaustive. Give credit for other plausible suggestions)
Level	0	No rewardable material	
1	1-	- there is limited discussion of the advantages or disadvantages of tidal power ie gives one advantage OR one disadvantage of tidal power. e.g. tidal power is not available 24 hours a day/ The barrage will save fuel for motorists going to the town on the other side (of the estuary) - the answer communicates ideas using simple language and uses limited scientific terminology - spelling, punctuation and grammar are used with limited accuracy	
2	3-	- there is some discussion of the advantages and disadvantages of tidal power ie gives one advantage AND one disadvantage of tidal power e.g. an advantage of tidal power is that it uses a renewable energy resource and a disadvantage is that they damage birds' habitats - the answer communicates ideas showing some evidence of clarity and organisation and uses scientific terminology appropriately - spelling, punctuation and grammar are used with some accuracy	
3	5-6	- there is detailed discussion of the advantages and disadvantages of tidal power ie gives one advantage AND one disadvantage of tidal power, one of which is detailed, AND a clear link to another method e.g. tidal power stations are a good idea because they use a renewable energy resource and will help to conserve fossil fuel stocks. However, it causes problems for migrating fish - the answer communicates ideas clearly and coherently uses a range of scientific terminology accurately ling, punctuation and grammar are used with few errors	

Question Number	Answer	Acceptable answers	Mark
4(ai)	Model A because		(1)
	Model A (can produce up to (7200kWh per year (at 13mph) / will produce 6000 kWh (with given wind speed). (1)	Model B produces less than 6000 kWh per year at 13mph /requires wind speed of more than 13 mph to produce 6000 kWh	

Question Number	Answer	Acceptable answers	Mark
4(aii)	Substitution (1) 0.14×6000	Allow incorrect conversion of p to $£$ such as 0.014×6000 for 1 mark only	(2)
Evaluation (1) $(£) 840$	correct answer with no working shown gains both marks		

Question Number	Answer	Acceptable answers	Mark
4(aiii)	Divide the installation cost by the annual saving (to find the time in years) (1)	$£ 840$ for annual saving	(1)

Question Number	Answer	Acceptable answers	Mark		
4(aiv)	A suggestion linking (energy saving lamps) would not transfer so much thermal energy (1) he may have to use additional heating / lights (which would cost money to run/ purchase) (1)	reverse argument such as insufficient heat for chicks to thrive	(2)		
heat					
(Ignore references to light					
output.)				\quad	
:---					

Question Number		Indicative Content	Mark
QWC	*	A discussion including some of the following points - Both HEP and Solar power are renewable - Both HEP and Solar power would save fossil fuels - HEP only possible in some locations - HEP requires reservoirs and damming of rivers - This can damage environment /takes a lot of land out of use - Energy from solar power installation is currently much less than energy from fossil fuel powered station - Solar power only suitable in certain locations - Solar power reliability dependent on constant sunshine - Neither of them cause atmospheric pollution)
Level	0	No rewardable content	
1	1-2	- a limited description such as at least one relevant detail of each resource eg: Solar power doesn't give off atmospheric pollution. HEP generates more power than solar power. - the answer communicates ideas using simple language and uses limited scientific terminology - spelling, punctuation and grammar are used with limited accuracy	
2	3-4	- a simple discussion such as one which gives comparisons between the two or at least an advantage and disadvantage of both. eg: HEP does not use fossil fuels but it can damage the environment where is it located. Solar power will never run out but it requires lots of light/land. - the answer communicates ideas showing some evidence of clarity and organisation and uses scientific terminology appropriately - spelling, punctuation and grammar are used with some accuracy	
3	5-6	- a detailed comparison such as one which relates advantages and disadvantages of both HEP and solar power to a particular situation for possible large scale use e.g.: Solar power uses a renewable energy source but it currently does not produce as much energy as fossil fuel station where there is little sunlight. HEP can produce a lot more energy where there are hills and water but only possible in certain geographical locations. - the answer communicates ideas clearly and coherently uses a range of scientific terminology accurately - spelling, punctuation and grammar are used with few errors	

